Exercise 7.2.3

The decay of a population by catastrophic two-body collisions is described by

$$
\frac{d N}{d t}=-k N^{2}
$$

This is a first-order, nonlinear differential equation. Derive the solution

$$
N(t)=N_{0}\left(1+\frac{t}{\tau_{0}}\right)^{-1}
$$

where $\tau_{0}=\left(k N_{0}\right)^{-1}$. This implies an infinite population at $t=-\tau_{0}$.

Solution

Divide both sides of the ODE by N^{2}.

$$
\frac{d N / d t}{N^{2}}=-k
$$

The left side can be written as a derivative by the chain rule.

$$
-\frac{d}{d t}\left(\frac{1}{N}\right)=-k
$$

Multiply both sides by -1 .

$$
\frac{d}{d t}\left(\frac{1}{N}\right)=k
$$

Integrate both sides with respect to t.

$$
\frac{1}{N}=k t+C
$$

Use the initial condition $N(0)=N_{0}$ to determine C.

$$
\frac{1}{N_{0}}=C
$$

Then the previous equation becomes

$$
\frac{1}{N}=k t+\frac{1}{N_{0}}
$$

Invert both sides to get N.

$$
N(t)=\frac{1}{k t+\frac{1}{N_{0}}}
$$

Multiply the numerator and denominator by N_{0}.

$$
\begin{aligned}
N(t) & =\frac{N_{0}}{k N_{0} t+1} \\
& =N_{0} \frac{1}{1+\frac{t}{\left(k N_{0}\right)^{-1}}} \\
& =N_{0}\left(1+\frac{t}{\left(k N_{0}\right)^{-1}}\right)^{-1}
\end{aligned}
$$

Therefore,

$$
N(t)=N_{0}\left(1+\frac{t}{\tau_{0}}\right)^{-1}
$$

where $\tau_{0}=\left(k N_{0}\right)^{-1}$.

